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10of 5. High Horsepower American Cars. This
group includes cars with high horsepower,
indicating performance and possibly sportiness,
which are often associated with American
automotive culture. Horsepower is greater than
200 and Origin equals USA. 10 values.
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2 of 5. Fuel Efficient Japanese Cars. This group
represents cars from Japan that are known for
their fuel efficiency, reflecting Japanese
automotive engineering and consumer trends
towards sustainable driving. Miles_per_Gallon is
greater than or equal to 25 and Origin equals
Japan. 61 values.
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3 of 5. Low Horsepower European Cars. This
group highlights cars from Europe with lower
horsepower, often focusing on economy,

ity, and urban

is less than or equal to 70 and Origin equals
Europe. 20 values.
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4 of 5. Performance versus Fuel Economy. This
group contrasts cars focusing on high performance
(higher horsepower) against those prioritized for
fuel economy (higher MPG), indicative of
consumer choices based on econormic conditions

d awarene:

poweri
greater than 150 and Miles_per_Gallon is less than
or equal to 20. 45 values.
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5 of 5. Trends in American Car Efficiency. This
group focuses on American cars that have a wide
range of fuel efficiency, reflecting changing trends
in designs toward more eco-friendly options
without compromising performance. Origin equals.
USA and Miles_per_Gallon is between 15 and 30.
169 values.

Figure 1: Data highlights generated from an example cars dataset using the semantic scaffolding technique. Each highlight is

shown with a visualization of its query predicate, demonstrating that highlights correspond to areas of interest in the data.

ABSTRACT

Drawing connections between interesting groupings of data and
their real-world meaning is an important, yet difficult, part of en-
countering a new dataset. A lay reader might see an interesting
visual pattern in a chart but lack the domain expertise to explain its
meaning. Or, a reader might be familiar with a real-world concept
but struggle to express it in terms of a dataset’s fields. In response,
we developed semantic scaffolding, a technique for using domain-
specific information from large language models (LLMs) to iden-
tify, explain, and formalize semantically meaningful data group-
ings. We present groupings in two ways: as semantic bins, which
segment a field into domain-specific intervals and categories; and
data highlights, which annotate subsets of data records with their
real-world meaning. We demonstrate and evaluate this technique
in Olli, an accessible visualization tool that exemplifies tensions
around explicitly defining groupings while respecting the agency
of readers to conduct independent data exploration. We conducted
a study with 15 blind and low-vision (BLV) users and found that
readers used semantic scaffolds to quickly understand the meaning
of the data, but were often also critically aware of its influence on
their interpretation.

Index Terms: Data visualization, data narrative, accessibility.

1 INTRODUCTION

When a lay reader encounters a new dataset on a website or news
article, an important part of their exploratory process is to iden-
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tify interesting groupings of data, and explain them in terms of that
data’s real-world meaning. Broadly, the real-world meaning of data
is known as its semantics; domain-specific knowledge about data is
how a reader determines whether a number “represent[s] a day of
the month, or an age, or a measurement of height, or a unique code
for a specific person, or a postal code for a neighborhood, or a posi-
tion in space” [11] or other possible meanings. Effectively drawing
connections between data and its semantics can be challenging for
a lay reader. For instance, a reader might see an interesting visual
pattern in a chart but lack the domain-specific knowledge to ex-
plain its meaning. In this case, difficulty arises because the reader
does not know what they don’t know — it may be difficult to know
how to begin to acquire the relevant context. Or, a reader might
be familiar with a real-world concept but struggle to translate it
into the terms of the dataset. For example, a reader may not know
how to approximate a subjective concept like “sports car” in terms
of fields like Horsepower and Miles_per_Gallon — or possibly
other fields in the dataset that were not in the initial visualization.
These challenges can affect a reader’s comprehension of the data —
as prior research has shown, a reader’s interpretation of a visualiza-
tion is sensitive to differences in their prior knowledge and personal
background [6, 13].

In response, we developed a technique called semantic scaf-
folding for using domain-specific information from large language
models (LLMs) to identify, explain, and formalize semantically
meaningful data groupings. Rather than use an LLM to generate
summary descriptions or chat responses, we use it to return group-
ings as data structures that include a name, explanation, and query
predicate. For instance, in the example cars dataset, an LLM might
create a grouping named “Fuel Efficient Japanese Cars” with the
following explanation: “This group represents cars from Japan that
are known for their fuel efficiency, reflecting Japanese automotive
engineering and consumer trends towards sustainable driving” (Fig-
ure 1). Crucially, the LLM associates this grouping with the fol-
lowing query predicate: Miles_per_Gallon > 25 N Origin =
Japan. This allows a reader to connect the name and explana-
tion with an explicitly-defined subset of data. We developed two
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types of interface elements for presenting semantic groupings to a
reader: semantic bins, which segment a single field (i.e. column)
into domain-specific intervals and categories; and data highlights,
which annotate subsets of data records (i.e. rows) with their real
world meaning. These two uses of semantic scaffolding in an in-
terface serve distinct purposes. Semantic bins help a reader break
down a single field into understandable pieces, facilitating naviga-
tion and exploration through a dataset. Data highlights help a reader
quickly get an overview of a dataset, indicating potentially interest-
ing subsets to begin exploring further.

We prototyped these designs via extensions to Olli [1], an acces-
sible visualization system for screen reader users. Data accessibil-
ity is a rich context in which to evaluate our work because current
tools for blind and low vision (BLV) screen reader users amplify the
challenges lay readers of visualizations face. First, sighted readers
often rely on their visual perception to identify interesting group-
ings in a visualization, but screen reader interfaces rarely afford
a similar type of overview. Second, BLV readers highly value the
agency to independently explore data, conduct an open-ended inter-
pretive process, and arrive at their own conclusions about the data
[10]. For instance, research has shown that screen reader users find
descriptions less useful when they over-emphasize contextual and
domain-specific information at the expense of descriptive statistics
or the data values themselves [10, 2]. These two factors require
screen reader interfaces to strike a balance between making group-
ings available without overly prescribing a reader’s interpretation.
In our preliminary user testing, we found that textual scaffolding
was able to accelerate BLV readers’ understanding of a dataset’s
real-world meaning, but that readers were often critically aware of
Al’s influence on their interpretation process.

2 RELATED WORK
2.1 Accessible Textual Data Representations

To make data visualizations accessible to screen reader users, a de-
signer must provide descriptions that can be read as text-to-speech.
Because conventional static alt text does not afford data exploration
at varying levels of detail comparable to strategies sighted readers
employ, researchers have turned to structured textual descriptions
[20], which enable screen reader users to navigate along a hierar-
chy and move between overview and detail with textual descrip-
tions. Accessible visualization systems that incorporate structured
textual descriptions include Olli [1], Data Navigator [3], VizAbil-
ity [4], Chart Reader [18], and Umwelt [21]. This work introduces
a technique for augmenting textual structures with LLM-generated
groupings, and demonstrates the technique via extensions to Olli.

2.2 Generating Textual Descriptions with Language
Models

Natural language generation of textual descriptions for data visu-
alization is an area of research that has received renewed attention
due to recent advances in large language models (LLMs). There
are generally two interface design approaches that these systems
have taken. First are systems that provide a chat-like interface with
which a user can query a description by inputting a question in nat-
ural language (often known as chart question answering systems)
[8, 16, 4]. Second are systems that generate standalone summary
descriptions of charts, similar in format to conventional alt text writ-
ten by humans. This work includes systems like Chart-to-Text [12]
and DataTales [17]. The advantage of using LLMs to generate de-
scriptions is that they can automatically incorporate contextual and
domain-specific information — also known as L4 semantic con-
tent [10] — into descriptions [9]. However, a critical limitation
of this approach is the possibility that generated descriptions can
contain errors, including hallucinations [7]. But even if generated
captions were correct all of the time, there would still be drawbacks
to existing approaches. For instance, Choe et al. noted that users

sometimes become over-reliant on the LLM in a chart question an-
swering system instead of developing their own interpretations of
the data [2]. Similarly, summarization-based approaches have the
same limitations that conventional alt texts do; namely, that they
lack affordances for information granularity and limit users’ ability
to conduct self-guided exploration [20]. In our work, we introduce
a new technique — distinct from Q&A or summarization — for us-
ing LLMs to incorporate domain-specific information. We use an
LLM to generate semantically meaningful groupings, and use that
output to support structural navigation [20].

3 SEMANTIC SCAFFOLDING: IDENTIFYING, EXPLAINING,
AND FORMALIZING MEANINGFUL DATA GROUPINGS

Semantic scaffolding is a technique for using domain-specific in-
formation from a large language model (LLM) to guide a reader’s
understanding of a dataset’s meaning. We engaged in an iterative
co-design process involving a blind co-author in which we proto-
typed methods for incorporating domain-specific information into
a user interface for data exploration. This prototyping process re-
vealed different types of user needs that semantic scaffolding could
address, which we explore via two types of interface elements: se-
mantic bins and data highlights.

3.1 Semantic Bins

Binning is a common operation for analyzing and communicating
data that involves dividing a field into equally-sized intervals that
cover the extent of the field’s data values. Most data visualiza-
tions implicitly use binning to generate axis ticks, and accessible
textual data representations frequently use binning to structure a
screen reader’s navigation through data.

The conventional approach to binning does not take into ac-
count domain-specific information; computing equally-sized bins
is a function that can be applied to any dataset. However, lack
of semantic information could make it more difficult for a reader
to understand and contextualize a field’s data values. For exam-
ple, in a dataset about cars, a bin function might segment the
miles_per_gallon field by equally-sized increments of 10. How-
ever, a reader might not know what range of values is considered a
low vs. high fuel efficiency, or whether an increment of 10mpg rep-
resents a large or small difference in fuel efficiency. As a result, it
might be difficult for them to map the numbers onto their subjective
understanding of fuel efficiency.

Semantic bins are groupings that use domain-specific informa-
tion to segment a field into higher-level intervals and categories
that express a dataset’s meaning. Figure 2 shows an example us-
age of semantic binning applied to fields with a variety of measure
types (temporal, quantitative, and nominal). For a continuous (e.g.,
temporal, quantitative) field, we prompt an LLM to re-bin the field,
specifying in the prompt that bins should be non-overlapping inter-
vals that cover the extent of the data. In the figure, the semantic
bins map onto how a reader might make sense of years (via his-
torical periods corresponding to agricultural practices), and amount
of wheat yield (via levels from low to high relative to the typical
or expected yield) (Figure 2A). For a categorical field, we prompt
an LLM to group categories into higher-level groupings, specify-
ing in the prompt that the groupings should be mutually exclusive
and exhaustively cover all categories. The figure example takes the
names of barley varieties and groups them into meaningful high-
level categories, such as “Heritage Varieties” or “Modern Breeds”
(Figure 2B).

3.2 Data Highlights

Data highlights are groupings of data records along criteria that
correspond to a real-world interpretation. In contrast to a seman-
tic bin, which is defined by a predicate involving only one field,
a data highlight’s predicate can involve multiple fields to select a



X-axis titled year. For a ordinal scale. With 52 values from 1565 to 1820.
10f 4. Early Agricultural Practices. This period encompasses the early years of
cultivation and the beginnings of agricultural development in Europe, featuring
80 limited technological advancements. Year is between 1565 and 1600. 8 values.
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surplus and may suggest farming innovations or extraordinary growing
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3 of 4. Experimental Varieties. These entries reference newer or less
commonly used varieties that may have been part of agricultural
experimentation during the early 20th century. Variety is one of No. 457,
No. 462, No. 475. 6 values.

4.f 4. Specialized Adaptations. This group includes varieties that may
have been developed or selected specifically for unique soil conditions or

climatic adaptations. Variety is one of Peatland, Velvet. 4 values.

Figure 2:  Semantic binning using a example wheat and barley
datasets. A) the year field (temporal) is binned into historical peri-
ods, and wheat yield (quantitative) is binned into levels of low to high
production. B) barley variety (nominal) is grouped into higher-level
variety types.

subset of data records. For example, each data highlight in Figure 1
represents a semantically-meaningful subset of cars in the example
car dataset, with a predicate that involves two or more of the fields
Horsepower, Miles_per_Gallon, and Origin.

Data highlights are akin to visual annotations for readers, which
are a technique that designers frequently use to emphasize and draw
attention certain parts of the data [14]. Indeed, data highlights have
the same components as many instances of visual annotation: a
defined subset of data records, and a semantically-meaningful ex-
planation. However, we think of data highlights as independent of
any specific visual representation. In our examples, we convey data
highlights both as a conditional encoding in a visualization (e.g. vi-
sually annotating the included data points using color or opacity),
and as descriptions in a textual structure (Figure 1).

Data highlights are designed to help lay readers understand
a dataset even if they lack prior knowledge about the data do-
main. For example, in the cars dataset from Figure 1, a reader
might observe the inverse relationship between Horsepower and
Miles_per_Gallon but lack the context to know why there might
be a tradeoff between the two, or how cultural factors between the
three Origin values contribute to differences. In Figure 1, each
data highlight focuses on a different region of the chart, and con-
nects the selected data points with a real-world explanation. For
example, the third data highlight in the figure is called “Low Horse-
power European Cars,” and explains the tendency for European cars
to have lower horsepower in terms of economy, practicality, and ur-
ban commuting. The highlight includes a query predicate defining

the grouping’s inclusion criteria in terms of the Horsepower and
Origin fields, allowing the reader to connect the explanation to
concrete values in the dataset.

3.3 Limitations
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Figure 3: Examples of LLM errors encountered in our design pro-
cess. A) LLM hallucinates dataset semantics when there is not
enough information. B) LLM includes information that is outside of
the dataset’s context. C) LLM generates incorrect query predicate.

Because semantic scaffolding is a technique that relies on LLMs,
it is limited by the kinds of errors LLMs tend to make. Here, we
provide examples of errors we observed in our prototyping process.

Hallucinated dataset semantics. When a dataset does not have
meaningful field labels, the LLM might hallucinate a domain for the
data. In Figure 3A, the data has the generic field labels of category
and value. Even though there’s no information about what these
fields mean, the LLM interprets them as consumer products.

Social context inappropriate to dataset. The LLM may incor-
porate domain-specific information that is not necessarily factually
wrong, but is outside of the scope of the dataset. Figure 3B shows a
data highlight referencing the COVID-19 pandemic, which started
in 2020, for an unemployment dataset that only covers 2000-2010.

Incorrect query predicates. Figure 3C demonstrates an error
where the LLM identified a reasonable grouping, but was unable
to formulate a correct query predicate that matches the explanation.
The figure shows one correct predicate and one incorrect predicate
generated from the same data. While the fertility between 2000
and 3 term is syntactically valid, it is semantically incorrect.

Discussion of limitations. In our prototyping process, we ex-
plored recent techniques for LLM output validation, such as Sym-
Gen [5]. However, we found that most data-to-text validation tech-
niques were not appropriate for our use case, because we are not
merely asking the LLM to summarize a dataset. In our case, our
goal is to leverage the LLM’s knowledge that is external to the
dataset. As a result, validating this information requires either
access to an external knowledge base, or use of a proxy like the
model’s internal confidence [19]. Therefore, because this is still
an active area of research, we were not able to incorporate reliable
technical approaches to validating the output of semantic scaffold-
ing at this time. However, in our user testing, we surfaced insights
on user behaviors and strategies for validating and thinking criti-
cally about LLM output (section 5).

4 IMPLEMENTATION

We implemented semantic scaffolding by prompting gpt-4o0-mini
with instructions to create and return data groupings, attaching a
full dataset to the prompt. To ensure that we receive a structured re-
sponse from the LLM, we defined a data structure that specifies our
expected response format. Each grouping identified by the LLM is
returned as a data structure with three properties: a name that sum-
marizes the content of the grouping; a longer explanation of the



grouping’s meaning; and a query predicate that defines the criteria
for a data point to be included in the grouping. For compatibil-
ity with existing visualization tools, the query predicate is specified
in Vega-Lite’s existing predicate syntax [15]. Figure 4 contains a
definition of the data structure in TypeScript syntax.

type LLMResponse = {
groups: SemanticScaffold[];
};

type SemanticScaffold = {

name: string;

explanation: string;

predicate: LogicalComposition<FieldPredicate>;
};

{
"name": "AAPL Price Surge During the Tech Boom",
"explanation": "This group focuses on Apple's stock price
« during the late 2000s and early 2010s, highlighting
< its rise in value matched with the smartphone
— revolution and innovation of products like the
< iPhone.",
"predicate": {
"and": [

{ "field": "symbol", "equal": "AAPL" },

{ "field": "price", "gte": 150 },

{ "field": "date", "range":

[ "2008-08-31", "2012-12-31" ] }

Figure 4: Type definitions and example for semantic scaffolding

5 [EVALUATION

We conducted an exploratory study with 15 blind and low-vision
(BLV) participants who use screen readers. The goal of this eval-
uation was to form an initial understanding of how our technique
affects readers’ data exploration and interpretation. The study in-
volved 100-minute Zoom interviews with 15 BLV participants ex-
ploring prototype implementations of semantic scaffolding in Olli
[1]. Here, we report some qualitative themes that emerged from our
initial observations.

Semantic scaffolding helps readers understand and contex-
tualize data. When encountering a new dataset, readers need to
understand the data’s real-world meaning first. P1 illustrated this
point, saying “the numbers don’t mean much until I know a lit-
tle bit about what I’'m reading about.” We found that participants
were able to quickly identify what the data refers to using seman-
tic scaffolds even if their initial understanding was incorrect. For
instance, participants had many different initial guesses about the
prototypes’ data semantics. Based on the Flipper Length (mm)
and Body Mass (g) fields, some participants initially thought the
penguins dataset referred to fish (P1), seals (P2), or dolphins (P3).
However, all these participants correctly updated their understand-
ing to reflect information about penguins found in the data high-
lights. Accelerating this process of identifying data semantics can
be very important to a reader’s experience: as one participant put it,
“I don’t feel dumb looking at this data” (P4).

One participant contrasted semantic scaffolding positively with
prior Al-based tools they had used. P9, who had used chart
question-answering tools in the past, noted that “sometimes you
don’t know what questions to ask” when you are not familiar with
the data. Further, they said “sometimes its unfair to expect you to
ask the right questions because you don’t have a clue of [...] what
the data is about.” Semantic scaffolding can address this “cold start”
problem when participants start with limited prior knowledge.

Readers critically appraise semantic scaffolds using their
prior knowledge. Semantic scaffolds prompted participants to
think about data in semantically meaningful ways, incorporating
their own prior knowledge. For example, P8 noted that “car manu-
facturers don’t [categorize cars with] engine sizes, they just base it
on fuel economy,” and suggested “utility” as a potential additional
category. In this case, the participant had additional context or ex-
pertise that made the LLM’s categorization insufficient for them,
even if it was not technically wrong.

Sometimes, participants were skeptical of arbitrariness and
asked for justification. P11 questioned the subjectivity of certain
categories: I don’t know how arbitrary the cutoff is. Like, what
would you say a gas guzzler is? That’s maybe arbitrary, maybe not.
I don’t know.” Even when participants lacked domain knowledge to
fully evaluate explanations, they were still aware of potential limi-
tations in the groupings.

Willingness to verify the output was context-dependent. Many
said that they would more likely check against other sources if they
were looking at data for professional purposes (P1), making a pre-
sentation (P2), or if it was otherwise important (P6, P8). In our
study, participants used the data table to compare against the de-
scription of the grouping’s query predicate (P11).

BLYV readers also want sighted readers to have semantic scaf-
folding, to preserve common ground. For many participants, the
use of semantic scaffolding made them reflect on situations where
they are collaborating with sighted people. For example, partici-
pants noted that semantic scaffolding provides “maybe more than a
sighted person would get from such a graphic because it gets you
info about the relevance of the values with knowledge you don’t
have” (P6) and that this “feels weird when working with sighted
people” (P8). Participants generally felt that it was important to
maintain parity of information access with sighted people. For
example, P10 asked, “does the visual person get the same info?”
Prior work has emphasized the importance of common ground be-
tween mixed-ability collaborators [21], and participants’ concerns
reflected the idea that it was important to them to participate in and
lead conversations about data even in spaces that have a majority
of sighted people. P14 explained, “whenever you can put sighted
and blind individuals on the same playing field with equal footing,
you’ve accomplished something that’s really marvelous. [...] For us
to be able to be literally on the same page, it’s helpful because we’re
looking at the very same information.” For P14, accessibility is a
two-way street: “[blind people] have to accommodate [visual peo-
ple] in a way.” It was important to them to include sighted collabo-
rators in their data analysis process, even when using assistive tools
like semantic scaffolding. These discussions led us to reflect on the
distinction in our work between disability inclusion for BLV peo-
ple and making data understandable for lay readers, two ideas of
accessibility that can be complementary and mutually-reinforcing.

6 CONCLUSION

In this paper, we introduced semantic scaffolding: a technique for
using an LLM to generate meaningful groupings of data to aid lay
readers in understanding unfamiliar datasets. With semantic scaf-
folding, readers benefit from domain-specific knowledge that is in-
corporated into descriptions and navigational structures. We instan-
tiated this approach in Olli, and observed that users find semantic
scaffolds valuable for forming an initial understanding of a dataset
while applying their prior knowledge to evaluating the trustworthi-
ness of descriptions. Our work suggests a use for LLMSs to augment
user interfaces with domain-specific affordances for interpretation.
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